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About this talk

I Overview of quantum logic research at Nijmegen
I Performed within context of ERC Advanced Grant Quantum Logic,

Computation, and Security
• Running period: 1 May 2013 – 1 May 2018

I Focus on categorical axiomatisation of the quantum world
• esp. differences/similarties with probabilistic and classical

computing
I Key notion is effectus, a special kind of category (see later)
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Group picture
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From Boolean to intuitionistic & quantum logic
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Aha-moments in categorical logic

effectus theory (2010s)

I focus on characteris-
tic maps X → 1 + 1

I they form an effect
algebra

topos theory (1970s)

I focus on subobjects
A� X

I they form a Heyting
algebra

•

]] @@
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Example (without knowing yet what an effectus is)

The opposite Rngop of the category of rings (with unit) is an effectus,
with:

R
predicate // 1 + 1 in Rngop

==============
Z× Z // R in Rng

======================
idempotent e ∈ R, so e2 = e

Hence the predicates on R ∈ Rngop are its idempotents
I These idempotents e ∈ R form an effect algebra, with:

truth 1 falsum 0 orthocomplement e⊥ = 1− e

Additionally there is a partial sum e > d = e + d if ed = 0 = de.
I If R is commutative, then the idempotents form a Boolean algebra!

(this case is well-known/studied, eg. in sheaf theory for commutative rings)
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Origin of ‘effectus’

New Directions paper
I B. Jacobs, New Directions in Categorical Logic, for Classical,

Probabilistic and Quantum Logic, LMCS 11(3), 2015
I Introduces four successive assumptions (and elaborates them)

Intro paper
I Cho, Jacobs, Westerbaan, Westerbaan, Introduction to Effectus

Theory, 2015, arxiv.org/abs/1512.05813, 150p.

Several other papers by ERC team members, eg.
I Kenta Cho, on equivalence between ‘total’ and ‘partial’ description
I Robin Adams, on “effect” logic & type theory
I Bas & Bram Westerbaan, on von Neumann algebra model
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Effect algebras, definition

Effect algebras axiomatise the unit interval [0, 1] with its (partial!)
addition + and “negation” x⊥ = 1− x .

Definition
A Partial Commutative Monoid (PCM) consists of a set M with zero
0 ∈ M and partial operation > : M ×M → M, which is suitably
commutative and associative.
One writes x ⊥ y if x > y is defined.

Definition
An effect algebra is a PCM in which each element x has a unique
‘orthosuplement’ x⊥ with x > x⊥ = 1 ( = 0⊥ )
Additionally, x ⊥ 1⇒ x = 0 must hold.
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Effect algebras, observations

I There is then a partial order, via x ≤ y iff y = x > z , for some z

I Each Boolean algebra is an effect algebra, with:

x ⊥ y iff x ∧ y = 0, and then x > y = x ∨ y

I In fact, each orthomodular lattice is an effect algebra (in the same way)

I Frequently occurring form: unit intervals:

[0, 1]G = {x ∈ G | 0 ≤ x ≤ 1}
in an ordered Abelian group with order unit 1 ∈ G .
• x⊥ = 1− x
• x ⊥ y iff x + y ≤ 1, and in that case x > y = x + y .
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arxiv.org/abs/1512.05813


Homomorphisms of effect algebras

Definition
A homomorphism of effect algebras f : X → Y satisfies:
I f (1) = 1
I if x ⊥ x ′ then both f (x) ⊥ f (x ′) and f (x > x ′) = f (x) > f (x ′).
This yields a category EA of effect algebras.

Example:
I A probability measure yields a map ΣX → [0, 1] in EA
I Recall the indicator (characteristic) function 1U : X → [0, 1], for a

subset U ⊆ X .
• It gives a map of effect algebras:

P(X )
1(−) // [0, 1]X
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Naturality of partial sums/disjunctions in logic

George Boole in 1854 thought of disjunction as a partial operation

“Now those laws have been de-
termined from the study of in-
stances, in all of which it has been
a necessary condition, that the
classes or things added together
in thought should be mutually ex-
clusive. The expression x + y
seems indeed uninterpretable, un-
less it be assumed that the things
represented by x and the things
represented by y are entirely sep-
arate; that they embrace no indi-
viduals in common.” (p.66)
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Effect modules

Effect modules are effect algebras with a scalar multiplication, with
scalars not from R or C, but from [0, 1].
(Or more generally from an “effect monoid”, ie. effect algebra with multiplication)

Definition
An effect module M is a effect algebra with an action [0, 1]×M → M
that is a “bihomomorphism”

A map of effect modules is a map of effect algebras that commutes with
scalar multiplication.
We get a category EMod ↪→ EA.
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Effect modules, main examples

Probabilistic examples
I Fuzzy predicates [0, 1]X on a set X , with scalar multiplication

r · p def
= x 7→ r · p(x)

I Measurable predicates Hom(X , [0, 1]), for a measurable space X ,
with the same scalar multiplication

I Continuous predicates Hom(X , [0, 1]), for a topological space X

Quantum examples
I Effects E(H) on a Hilbert space: operators A : H → H satisfying

0 ≤ A ≤ I , with scalar multiplication (r ,A) 7→ rA.

I Effects in a C∗/W ∗-algebra A: positive elements below the unit:

[0, 1]A = {a ∈ A | 0 ≤ a ≤ 1}.
This one covers the previous illustrations.
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Basic adjunction, between effects and states

Theorem By “homming into [0, 1]” one gets an adjunction:

EModop
Hom(−,[0,1])

,,> Conv
Hom(−,[0,1])

mm

This adjunction restricts to an equivalence of categories between:
I Banach effect modules, which have a complete norm

(or equivalently, complete order unit spaces)
I convex compact Hausdorff spaces
This is called Kadison duality
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Effectus

An effectus is a category with finite coproducts (0,+) and 1 such that
I these diagrams are pullbacks:

A + X
id+g //

f+id
��

A + Y

f+id
��

B + X
id+g
// B + Y

A
id //

κ1
��

A

κ1
��

A + X
id+f
// A + Y

I these arrows are jointly monic:

X + X + X

····· =[κ1,κ2,κ2]
..

····· =[κ2,κ1,κ2]

00 X + X

Perspective:(
disjoint and universal

coproducts

)
+3
(
effectus

)
+3

(
disjoint

coproducts

)
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Internal logic

effectus meaning

objects X types
arrows X f→ Y programs
1 (final object) singleton/unit type

1 ω // X state

X
p // 1 + 1 predicate

1 ω //

ω�p
22X

p // 1 + 1 validity ω |= p

1 // 1 + 1 scalar
f∗(ω) = f ◦ ω state transformation
f ∗(q) = q ◦ f predicate transformation

f∗(ω) |= q
=

ω |= f ∗(q)
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Discrete probability example

I Claim: K`(D) is an effectus!
I Question: What are the predicates and states?

I Predicates are maps p : X → 1 + 1 = 2 in K`(D)
• hence they are functions p : X → D(2) ∼= [0, 1]
• predicates on X in K`(D) are thus fuzzy: elements of [0, 1]X

I States are maps ω : 1→ X in K`(D)
• hence functions 1→ D(X ), or elements of D(X )
• and so discrete probability distributions on X

I Validity ω |= p is Kleisli composition p ◦ ω : 1→ 1 + 1
• the outcome is a probability in D(2) ∼= [0, 1]
• it is given by the expected value

∑
x ω(x) · p(x)
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Examples of states and predicates in an effectus

State Predicate Validity Scalars

1 ω→ X X
p→ 1 + 1 ω � p 1→ 1 + 1

classical
Sets

element
ω ∈ X

subset
p ⊆ X ω ∈ p {0, 1}

probabilistic
K`(D)

discrete distribution
ω ≡

∑
i si |xi 〉

fuzzy predicates

X
p→ [0, 1]

∑
i sip(xi ) [0, 1]

probabilistic
K`(G)

probability measure

ΣX
φ→ [0, 1]

measurable predicates

X
p→ [0, 1]

∫
pdφ [0, 1]

quantum
vNAop

normal state
ω : X → C

effect
0 ≤ p ≤ 1 in X ω(p) [0, 1]
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Effect structure on predicates X → 1+ 1

I We get some logical structure for free:

1=
(
X
κ1◦!// 1 + 1

)
0=
(
X
κ2◦!// 1 + 1

)
p⊥=

(
X

p // 1 + 1
[κ2,κ1]

∼=
// 1 + 1

)
Then p⊥⊥ = p, 0⊥ = 1, 1⊥ = 0.

I Define p ⊥ q, for p, q : X → 1 + 1 if there is a bound b in:

X
p

ww

q

''
b

��
1 + 1 1 + 1 + 1

·····oo
····· // 1 + 1

In that case put p > q = (∇+ id) ◦ b : X → 1 + 1.
I Predicates 1→ 1 + 1 on 1 will be called scalars
• they carry a monoid structure p · q = [p, κ2] ◦ q
• it is commutative in presence of distributive tensors
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The structure of predicates and states

Theorem
Let B be an effectus. Then:
(1) The predicates X → 1 + 1 form an effect module
(2) The states 1→ X form a convex set

Predicate transformers f ∗ and state transformers f∗ preserve this
structure. We get a state-and-effect triangle:

EModop
**

> Convii

B
Pred

__

Stat

BB
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General picture: “state-and-effect triangles”

Heisenberg Schrödinger(
predicate

transformers

)op
--

>

(
state

transformers

)
mm

(
computations

)Pred

ff

Stat

88

I The traditional distinction in program semantics between predicate
transformers and state transformers also exists in the quantum world

I It corresponds to the different approaches of Heisenberg (matrix
mechanics) and Schrödinger (wave equation, for pure state changes)
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Overview: subclasses of effectuses

�
�

�



general
‘non-commutative’

effectuses
von Neumann algebras

�



�
	commutative

effectuses

?�

OO

commutative von Neumann algebras,

K`(D),K`(G)

�



�
	Boolean

effectuses

?�

OO

Sets,
extensive categories
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Defining these subclasses, I

Definition
A map f : X → X + 1 is called side-effect free if f ≤ id, where:
I id = κ1 : X → X + 1 is the Kleisi/partial identity map
I ≤ is an ‘obvious’ order on partial maps, defined as for predicates

Note: we can always turn a partial map into a predicate:(
X

f−→ X + 1
)
� //

(
X

f−→ X + 1 !+id−−→ 1 + 1
)

I Often, one can also go the other way around: from predicates to
partial endomaps

I This inverse is called assert, written as asrtp for predicate p

I Sometimes this assert map is even side-effect free.
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Defining these subclasses, II

Definition
The effectus B is called commutative if
I there are side-effect free inverses asrtp for “partial-map-to-predicate”
I these assert maps commute: asrtp ◦ asrtq = asrtq ◦ asrtp
An effectus is Boolean if it is commutative and assert maps are
idempotent: asrtp ◦ asrtp = asrtp.

Page 25 of 39 Jacobs 26 June 2017 Effectus Theory
Basic results in effectus theory Effectuses for probability and classical computation

Main results

Theorem
I In a commutative effectus, Pred(X ) is a commutative effect monoid
I In a Boolean effectus, Pred(X ) is a Boolean algebra, functorially:

B Pred // BAop

Theorem
Boolean effectuses ‘with comprehension’ are the same as extensive
categories

An extensive category has ‘well-behaved’ coproducts: they are disjoint
and universal.
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Assert maps for sequential conjunction (‘andthen’)

I For two predicates p, q : X → 1 + 1 define sequential conjunction:

p & q :=
(
X

asrtp // X + 1
[q,κ2] // 1 + 1

)
I This p & q incorporates the side-effect of p, via its assert map
• indeed, & is non-commutative in general, in the quantum case
• but it is commutative in commutative effectuses (probabilistic

case)

I More concretely,
• for p, q ∈ [0, 1]X we have (p & q)(x) = p(x) · q(x)
• for p, q ∈ B(H ), we use p & q =

√
pq
√
p
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Assert maps for conditioning of states

I Assert maps are also useful for conditioning of states
• conditioning is also called (Bayesian) state update/revision
• a uniform description can be given in an effectus
• it requires normalisation, of partial states to proper states

I Let ω : 1→ X be state, and p : X → 1 + 1 a predicate
• we get a partial state by composition:

1 ω // X
asrtp // X + 1

• write ω|p : 1→ X for its normalisation; it exits if ω |= p 6= 0
• Read ω|p as: ω, given p

I Once prove the conditional probability rule:

ω|p |= q =
ω |= p & q

ω |= p
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About quotients and comprehension

I Familiar picture in categorical logic:

truth a comprehension

I Quotients X/R defined for relations R ⊆ X × X give:

quotients a equality

I In linear algebra quotients A/S are typically defined for subspaces
S ⊆ A. Then:

quotients a falsity

Recall that truth and falsity predicates form right and left adjoints to a
fibration (functor), giving a quotient-comprehension chain:

quotients a falsity a fibration a truth a comprehension
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Example chains

I For vector spaces:

LSub(Vect)

a a
��

aS⊆V
7→V/S

**
a S⊆V
7→S

uu
Vect

0

>>

1

``

I For Hilbert spaces:

CLSub(Hilb)

a a
��

aS⊆V
7→S⊥

**
a S⊆V
7→S

ttHilb
0

>>

1

``

I Each Abelian category A has:

Sub(A)

a a
��

a

**

a

ttA
0

>>

1

``

Page 30 of 39 Jacobs 26 June 2017 Effectus Theory
Basic results in effectus theory Quotients and comprehension

Effectuses with quotient comprehension chains

For an effectus B write:
I PMap(B) for the category of partial maps X → Y + 1 in B
I PPred(B) for the category with predicates p : X → 1 + 1 as objects.

• maps
(
X

p→ 1 + 1
) f−→

(
Y

q→ 1 + 1
)
are f : X → Y + 1 with:

p ≤
(
q⊥ ◦ f

)⊥
Definition
An effectus has quotient and comprehension if there are outer adjoints:

PPred(B)

a a
��

a
((

a
vv

PMap(B)

0

>>

1

``

Such chains exist in all leading examples: non-trivial for v. Neumann algebras
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Quotient-comprehension chains and measurement

I It turns out that there are close connections between:
• quotient-comprehension chains in an effectus
• measurement, via “side-effectful” assert maps

I Canonical form in von Neumann algebras: asrtp(x) =
√
p · x · √p

I In all our examples we can factor assert (as partial map):

X

ξ
p⊥
)) ))

asrtp // X

X/p⊥
∼ {X |dpe}

55 πdpe
;;

This is formalised in a telos:
• an effectus with a square root axiom
• it axiomatises von Neumann algebras — and quantum theory
• details are still forthcoming
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EfProb tool support, see efprob.cs.ru.nl

I EfProb is abbreviation of Effectus Probability
• developed jointly with Kenta Cho

I It is an embedded language of Python, for probabilistic calculations
• it yields channel-based probability theory
• abstractly: a channel is a map in an effectus
• concretely: conditional probability, stochastic matrix, Markov

kernel, . . .

I EfProb uses: states, predicates, random variables, validity,
conditioning, state- and predicate-transformation, disintegration . . .
• uniform terminology & notation for discrete/continuous/quantum
• think: K`(D) / K`(G) / vNAop

I Extensive manual is available, with many, many examples
• Bayesian networks, hidden Markov models, quantum protocols, . . .
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Example: fish in a pond

Capture-recapture challenge
Imagine we wish to estimate the number of fish in a pond.

(1) we catch 20 fish, mark them, and throw them all back
(2) we wait a bit, catch 25, and find 5 are marked.

How many fish are in the pond?

Assumptions for the mathematical model
I the range of fish is [25, 300], as continuous interval
I the prior distribution is uniform
I in (2), each observed fish is thrown back before another is caught
I thus we can use a binomial with N = 25, and probability p = 20

x ,
where x ∈ [20, 300] is the number of fish
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Fish example in EfProb

Define domains (sample spaces) and priors:

>>> fish_dom = R(25 ,300)
>>> catch_dom = range (0 ,26)
>>> prior = uniform_state(fish_dom)

Next, a channel [25, 300]→ D
(
{0, . . . , 25}

)
>>> c = chan_fromklmap(lambda x: binomial (25, 20/x),
... fish_dom , catch_dom)
>>> catch = c >> prior # forward state transformation
>>> catch.plot() # draw picture

State transformation >> gives (Bayesian) prediction
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Predict probability of catching n marked fish

A discrete probability distribution on {0, . . . , 25}, assuming the prior
uniform distribution on [25, 300].
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Catch 25 fish, find 5 marked: reason backwards

Define ’observe 5’ predicate, then transform this predicate & condition:

>>> obs_5 = point_pred (5,catch_dom)
>>> post_5 = prior / (c << obs_5)
>>> post_5.plot()

The expected
number of fish
is 139
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Catch another 25 fish, now find 8 marked

Update the earlier posterior state post_5 once again:

>>> obs_8 = point_pred (8,catch_dom)
>>> post_5_8 = post_5 / (c << obs_8)
>>> post_5_8.plot()

The expected
number of fish
is now 89
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Main points

I Effectus is a basic notion of the “Nijmegen school”
• weak axioms, but suprisingly rich (logical) structure

I Different primitives:
• Oxford: tensors ⊗ and interaction, after Schrödinger
• Nijmegen: coproducts + and logic, after von Neumann
There is “stronger entanglement of research”

I Basics of effectus theory is now well-developed:
• state-and-effect triangles
• commutative (probabilistic) and Boolean subcases
• quotient and comprehension chains
• conditioning (update,revision) of states with predicates
• square root axiom, with pure maps and daggers

I EfProb tool support for discrete/continuous/quantum channel-based
probability calculations

I Is effectus theory the ‘new topos theory’? Far too early to say!
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